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Abstract

Natural convection through a rectangular enclosure filled with a fluid bathing several discrete, conducting and dis-

connected solid objects is common in many applications, such as environmental control (e.g., indoor buildings, stor-

age), materials processing (e.g., drying), food processing (e.g., baking), and electronics (e.g., cabinets). The case of

an enclosure heated from the side and containing equally spaced, conducting solid square blocks is investigated here

by using a continuum model, which treats the fluid and solid constituents individually. The dispersive effect of the solid

constituent is isolated by increasing the number of solid blocks (N) while reducing their size as to maintain their relative

total volume constant. Results obtained for a wide Rayleigh number (Ra) range and several values of solid-to-fluid con-

ductivity ratio (j) show the strong hindrance effect of the blocks on the convection process to be dependent on a min-

imum number of blocks, Nmin, for every Ra. An analytical expression predicting Nmin is proposed and validated by the

numerical results.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The study of transport phenomena in heterogeneous

media is fundamental for the design and optimization of

several devices and processes, including filters and cata-

lytic reactors, human respiration and capillary circula-

tion, underground contaminant transport, oil and gas

exploration and extraction, materials processing (e.g.,

casting, sintering, etching), heat exchangers (e.g., por-

ous-enhanced), grain storage, food processing, and

many others. Common to these devices and processes
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is the existence of at least two constituents, a solid

and a fluid, that would characterize the media as

heterogeneous.

A very important common characteristic of solid–fluid

heterogeneous media is the very complex interface mor-

phology of the constituents whose complexity translates

itself into a formidable obstacle for detailed numerical

simulations. Because of the tremendous computational

effort required to map the solid–fluid interface and hence

to resolve discontinuity in physical properties across the

interfaces, simulation of such phenomena has been a chal-

lenge. This aspect might explain the dwarf of studies in

this particular area.

The case of a fluid saturated rectangular enclosure

heated from the side containing several equally spaced

conducting and disconnected solid square blocks, as
ed.
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Fig. 1. Schematic of the heterogeneous enclosure, with fluid

and solid constituents, and the boundary conditions.

Nomenclature

A enclosure aspect ratio

d block side-length, m

D non-dimensional block side-length

g gravitational acceleration, m2/s

H enclosure height, m

i, j unit vectors in the x- and y-direction

k thermal conductivity, W/mK

L enclosure length, m

N number of solid blocks inside the enclosure

Nmin minimum number of solid obstacles neces-

sary for flow switch, Eq. (14)

Nu Nusselt number

Pr Prandtl number

p pressure, Pa

P non-dimensional pressure

Ra Rayleigh number

S non-dimensional distance between wall and

blocks

t time, s

T temperature, K

u velocity component in the x-direction, m/s

U x-direction non-dimensional velocity

component

v velocity component in the y-direction, m/s

v velocity vector

V y-direction non-dimensional velocity

component

V non-dimensional velocity vector

x,y horizontal and vertical Cartesian coordi-

nates, m

Greek symbols

a thermal diffusivity, m2/s

b isobaric coefficient of volumetric thermal

expansion, 1/K

c solid-to-fluid volume ratio within the

enclosure

g y-direction non-dimensional coordinate

j solid-to-fluid conductivity ratio

l dynamic viscosity, kg/ms

m kinematic viscosity, m2/s

h non-dimensional temperature

q density, kg/m3

r thermal capacity ratio

s non-dimensional time

n x-direction non-dimensional coordinate

Subscripts

av average

c cold

f fluid

h hot

m mid-plane

s solid
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sown schematically in Fig. 1, is investigated here. This

configuration is common in many engineering applica-

tions such as environmental control (e.g., indoor build-

ings, storage), materials processing (e.g., drying), food

processing (e.g., baking), and electronics (e.g., cabinets).

Although heterogeneous, the medium configuration

considered here has relatively simple interface morphol-

ogy. Hence, the problem lends itself to a continuum

model, which treats the fluid and solid constituents indi-

vidually. This higher resolution treatment, in which con-

tinuum transport equations (such as the Navier–Stokes

equations for the transport of momentum within the

fluid constituent) are used within each constituent indi-

vidually, requires solid–fluid interface mapping.

The main advantage of a continuum model approach

when modeling transport in heterogeneous media is the

detailed information obtained by the model. The draw-

back is the need for locating and mapping the constitu-

ent interfaces, and for the strong numerical effort

required solving the equations when the internal geome-

try (solid–fluid interface) is not simple.

The objective here is to investigate the effect of the so-

lid obstacles on the heat transfer process by changing the
number and size of the solid obstacles inside an enclo-

sure. As such, the internal structure of the medium can
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be made more or less geometrically complex, altering the

efficiency of the model when it comes to computational

effort. To isolate other possible effects, the total heat and

mass capacity of the solid constituent is kept constant.

This work is directly related to previous studies by Mer-

rikh and Mohamad [1] which considered conducting

obstacles in an enclosure of aspect ratio 2, and by Mer-

rikh et al. [2], which considered heat transfer within a

fluid filled enclosure with thermal energy being gener-

ated by discrete, disconnected solid obstacles.
2. Continuum model equations and boundary conditions

Fig. 1 presents a sketch of the domain, as seen at the

continuum visual resolution, consisting of a fluid filled

enclosure containing several conducting solid obstacles

that are disconnected and distributed uniformly within

the enclosure. The enclosure is subjected to a horizontal

temperature difference (applied at the walls), which in

turn induces natural convection by the fluid within the

domain.

In the present study, the medium is composed of two

distinct, homogeneous and isotropic constituents,

namely the fluid and solid, within the enclosure. Trans-

port equations for each constituent together with appro-

priate compatibility conditions at their interfaces (also

referred to as ‘‘internal’’ boundary conditions) are dis-

cussed next. For the fluid with constant properties, the

continuum transport equations are the continuity,

momentum and energy equations, respectively:

r � v ¼ 0 ð1Þ

qf

ov

ot
þ ðv � rÞv

� �
¼ �rp þ lr2vþ qfgbðT � T cÞj ð2Þ

ðqcÞf

oT
ot

þ v � rT
� �

¼ kfr2T ð3Þ

The solid obstacles within the enclosure participate,

indirectly, amid the transport of momentum by the fluid

through their solid–fluid interfaces where the no-slip

condition is imposed. Their participation on the energy

transport across the enclosure, however, is expected to

be more effective for being conducting solids. The energy

balance equation, valid for the solid blocks, is

ðqcÞs

oT
ot

¼ ksr2T ð4Þ

The fluid density variation in the buoyancy term of

Eq. (2) is modeled using the classical Oberbeck–Bous-

sinesq approximation with Tc being the reference fluid

temperature.

For solving Eqs. (1)–(4) the velocity components u

and v are set to zero at all solid surfaces. The right wall

of the enclosure is maintained at temperature Tc, and the
left wall is at Th > Tc. The horizontal top and bottom

surfaces of the enclosure are adiabatic.

Using non-dimensional coordinates, (n,g) = (x,y)/H,

fluid velocity, V = vH/af, time, s = taf/H
2 pressure, P ¼

pH 2=qfa
2
f , and temperature, h = (T � Tc)/(Th � Tc),

and defining dimensionless parameters such as the Pra-

ndtl number, Pr = m/a, the Rayleigh number, Ra =

gbH3(Th � Tc)/maf, and fluid-to-solid thermal capacity

ratio, r = (qc)s/(qc)f, Eqs. (1)–(4) are converted to the

following non-dimensional equations.

r � V ¼ 0 ð5Þ

oV

os
þ ðV � rÞV ¼ rP þ Prr2Vþ RaPrhj ð6Þ

oh
os

þ V � rh ¼ r2h ð7Þ

r
j

� � oh
os

¼ r2h ð8Þ

The non-dimensional mathematical representations

of the boundary conditions are

h ¼ 1; U ¼ V ¼ 0 at n ¼ 0;

h ¼ U ¼ V ¼ 0 at n ¼ A ð9Þ

oh
og

¼ U ¼ V ¼ 0 at g ¼ 0 and g ¼ 1 ð10Þ

At the solid–fluid interfaces, the following compati-

bility conditions apply

U ¼ V ¼ 0; hjf ¼ hjs;
oh
on

����
f

¼ j
oh
on

����
s

ð11Þ

where A is the aspect ratio of the enclosure, A = L/H, n

is the unit vector along the direction normal to each and

every block boundary, and j is the solid-to-fluid thermal

conductivity ratio ks/kf.

In summary, the results of the continuum model de-

pend on the following parameters: Ra, Pr, r, j, and the

geometrical parameters A, D (the non-dimensional solid

body side-length, D = d/H), and on the number of solid

blocks inside the enclosure, N.

Heat transfer across the enclosure is evaluated using

the average Nusselt number at the hot wall, defined as

Nuav = havH/kf. Then, to evaluate Nuav one must first

determine the value of hav, which can be obtained from

the definition hav ¼ q00av=ðT h � T c), which requires the

determination of q00av, to be found from the conduction

heat flux at the hot wall, namely q00av ¼ �kfðoT=oxÞav;h.

So, the hot-wall average Nusselt number is

Nuav ¼
havH
kf

¼ H
T h � T c

� �
1

H

Z H

0

�oT
ox

����
x¼0

dy
� �

¼ �
Z 1

0

oh
on

����
n¼0

dg ð12Þ



1364 A.A. Merrikh, J.L. Lage / International Journal of Heat and Mass Transfer 48 (2005) 1361–1372
3. Results and discussion

Although the model equations were presented in their

transient form, only the steady-state solutions are pre-

sented here. Moreover, the enclosure aspect ratio is set

as A = 1, and Pr = 1. The number of solid blocks N is

varied from 9 to 144, while the total mass of solid block

inside the enclosure is kept constant by fixing the solid-

to-fluid volume ratio, c to 36%. Although arbitrary, this

solid-to-fluid volume ratio criterion that is maintained

constant by reducing the size D of the blocks, facilitates

the numerical modeling and provides results that are

general enough for our purposes. Observe that the

non-dimensional block size, D, is uniquely determined

once N and c are determined, as D = (c/N)0.5. Hence,

the deciding parameters for the continuum model are

limited to Ra, j, and N. The effect of fluid and solid con-

stituent thermal conductivity is studied by considering

j = 0.1, 1, 10, and 100, with results presented for Ra

varying from 105 to 108. A summary of the parameter

values used here is presented in Table 1.

Eqs. (5)–(8) of the continuum model, together with

the corresponding boundary conditions, are discretized

and solved using the control-volume method following

SIMPLER [3] algorithm with the QUICK [4] scheme.

For the most stringent case considered here, i.e.,

using the maximum number of blocks, N = 144, and

the highest Rayleigh number, Ra = 108, a uniform grid

with 241 · 241 nodes yielded average Nusselt number re-

sults that were within 1% of the results obtained when
Table 1

Summary of parameter values used in the present study

Ra 105, 106, 107, 108

Pr 1

A 1

c 0.36

j 0.1, 1, 10, 100

N 9, 16, 36, 64, 144

D 0.2, 0.15, 0.1, 0.075, 0.05

Table 2

Comparison between published results and results obtained with the

square enclosure filled only with a clear fluid (Pr = 0.71, unless other

Ra House et al. [5] de Vahl Davis [6] Hortmann et al. [7] Kal

104 2.254 2.243 2.244 2.24

105 4.561 4.519 4.521 4.52

106 8.923 8.800 8.825 8.82

107 – – – 16.5

108 – – – –

a Analytical estimates obtained from Eq. (7.100), p. 369.
using a 301 · 301 grid. Therefore, all reported results

were obtained with a 241 · 241 grid.

The numerical approach is validated in three ways.

The first considers an enclosure clear of solid bodies

(N = 0), for which present results compare very well with

the published results from several distinct sources, as

shown in Table 2. The second considers the case of a sin-

gle solid conducting square, located at the center of the

enclosure, identical to the configuration studied by

House et al. [5]. Table 3 shows the present results to

compare well with the published results.

Fig. 2a exhibits streamlines obtained with Ra = 106

and j = 1. For small number of larger blocks (e.g.,

N = 9 and 16) the flow is stronger along the heated

and cooled walls. As the number of blocks increases,

and their size is reduced, the flow tends to migrate away

from the wall, occupying the vertical channel between

the two columns of blocks adjacent to the walls. This

phenomenon seems to be a response by the system to

the increased flow resistance, as the blocks get closer

to the solid wall. In this case, fluid prefers the less resis-

tive path in between the two adjacent columns of blocks.

A switch in flow path, observed when N grows from 16

to 36, requires the buoyancy region that propels the fluid

(region affected by the heating or cooling wall) to extend

itself beyond the column of blocks adjacent to the walls.

The flow path switch is revealed also by the reduced flow

near the top-left and bottom-right corners of the enclo-

sure when N increases. As a consequence, the convective

heat transport is expected to get hindered as well,
Table 3

Comparison between average Nusselt numbers for a square

enclosure filled fluid (Pr = 0.71) and a conducting square solid

body at the center

Ra D j House et al. [5] Present

105 0.5 0.2 4.624 4.605

105 0.5 5.0 4.324 4.280

106 0.9 0.2 2.402 2.352

continuum model based on the average Nusselt number, for a

wise noted)

ita et al. [8] Lage and Bejan [9] Pr = 1 Bejana [10] Present

5 – 2.418 2.244

2 4.9 4.715 4.536

9 9.2 9.194 8.860

2 17.9 17.927 16.625

31.8 34.954 31.200



Fig. 2. Streamlines for: (a) Ra = 106, j = 1; (b) Ra = 107, j = 1.
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outcome of becoming restricted to an effective shorter

length of the heated (or cooled) wall.

Fig. 2b presents similar results for Ra = 107. Here the

flow remains adjacent to the hot (and cold) wall even

when N = 36. Although restraining flow effect caused

by the proximity of the blocks to the walls is expected

in this case, the higher Ra yields a narrower buoyancy

region (closer to the walls), hindering the flow path

switch phenomenon. This certainly affects flow structure

along the horizontal adiabatic surfaces of the enclosure,

with a relatively stronger flow observed when Ra is high

for the same number of blocks, N.

Because the results of Fig. 2 are pertinent to j = 1, ef-

fect of obstacles on the temperature distribution is ex-

pected to reflect, faithfully, their influence on the flow.

Fig. 3a and Fig. 3b demonstrate the isothermal distribu-

tion corresponding to the streamlines shown in Fig. 2,

for Ra = 106 and 107, respectively. For the case

Ra = 106, observe how the isotherms along the hot (left)
wall, from bottom to top, progressively shift further

away from the wall as N increases. The waviness of

the isotherms observed mainly near the hot and cold

walls reflects flow channeling in between the blocks as

observed in Fig. 2. As N increases, isotherms tend to

stand parallel to the vertical walls indicating a reduction

in the flow intensity within the enclosure. The isotherms

of Fig. 3b, for high Ra, show the characteristic vertical

temperature stratification away from the walls.

From Figs. 2 and 3, the blocks seem to have a hinder-

ing effect on the flow as N increases, with this effect being

more pronounced when the buoyancy region adjacent to

the hot and cold walls is wider, or equivalent to the case

of low Ra. This observation is corroborated by Fig. 4,

which exhibits Nuav evolution as N increases. Observe

the Nuav variation with N that switches as Ra increases

from 106 to 107, for instance. For Ra = 107, Nuav de-

creases by only 5.2% when N increases from 9 to 16;

however, when Ra = 106 the decrease is over 31%. For
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Ra = 108, the Nuav decay is appreciable only when N in-

creases from 64 to 144 due to the very narrow buoyancy

region achieved for such a high Ra.

An analytical prediction for the flow switch explained

above can be obtained by comparing the estimated scale

of the boundary layer along a heated (or cooled) channel

wall to the space between the wall and the blocks in the

enclosure. From Bejan [10], p. 365, for a Pr P 1 fluid,

the boundary layer is confined to the entire space

between two isothermal walls when Ra�1/4 = S*,

where S* is the non-dimensional distance between

the two walls. For a single heated wall, Ra�1/4 = S*/2

is a better scale. The distance, S, available for the fluid

to flow in between the heated (or cooled) wall and the

first column of blocks in the present case can be esti-

mated as S = (1� DN1/2)/(2N1/2), or S = (1 � c1/2)/

(2N1/2). One would expect the fluid to channel away

from the wall only when the boundary layer (region of

buoyancy effect) grows beyond the space between the
wall and the first column of blocks, i.e., when S* > S,

or when

N >
ð1 � c1=2Þ2

16
Ra1=2 ð13Þ

In the present study c = 0.36, so using Eq. (13) the

minimum number of blocks required for flow switch

becomes:

Nmin ¼ 0:01Ra1=2 ð14Þ

Hence, the fluid will only channel away from the

heated (or cooled) wall when N is greater than (or Nmin

equals to) 3, 10, 32, 100, and 316, for Ra = 105, 106, 107,

108, 109, respectively. In this case, one would expect

Nuav to decrease as N increases. When N < Nmin, flow

will remain between the first column of blocks and the

vertical walls, so the effect of increasing the number of

blocks (or N) on the heat transfer process should be

minor. Results predicted by Eq. (14) are included



Fig. 3. (a) Isotherms for Ra = 106, j = 1; (b) Ra = 107, j = 1.
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graphically in Fig. 4: for each Ra value, Nmin predicted

by Eq. (14) becomes the one marked by the intersection

between the dashed line with the Ra curves. Observe

that, to the right of the dashed line, N > Nmin indicating

that Nuav decreases with an increase in N. This predic-

tion is confirmed well by the numerical results.

The effect of the solid–fluid thermal conductivity ra-

tio j on the flow field and heat transfer process is more

difficult to predict because of two competing effects. For

a fixed block distribution, when j > 1, the solid blocks

near the hot or cold walls will increase the heat transfer

from the wall and, by consequence, widen the effective

buoyancy region, enhancing the convective process. This

effect should be more prevalent when Ra is low because

the original buoyancy region (thermal boundary layer

thickness) is wide in this case so that the blocks adjacent

to the wall become active participants of the heat trans-

fer process. However, the blocks located away from the

walls should also enhance the heat transfer rate from the
top horizontal fluid stream to the bottom horizontal

fluid stream, hindering the overall heat transfer process

(vertical conduction).

For j < 1 and small Ra the opposite will take place,

i.e., convection along the walls will be restrained to a

narrower region and the vertical heat transfer within

the mid-section of the enclosure between top and bot-

tom horizontal fluid streams (vertical conduction) will

be hindered. Also, the j effect on the convection process

should be minor when Ra is high.

The validation of the above predictions can be veri-

fied by considering Fig. 5, in which streamlines (5a)

and their corresponding isotherms (5b) are plotted for

Ra = 106 and N = 36, and for j = 0.1,1, and 10. Based

on the results of Fig. 4, the configuration yields a wide

buoyancy region; the blocks adjacent to the wall partic-

ipate actively on the heat transfer process. It is clear

from Fig. 5a that more fluid is set to flow far from the

heated (or cooled) wall as j increases. At the same time,
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Fig. 4. Average Nusselt number versus the number of blocks for various Ra. Dashed line shows results predicted by Eq. (14).
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Fig. 5. Streamlines for: (a) Ra = 106, N = 36; (b) Ra = 106, N = 36.
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from Fig. 5b, the stratification within the center of the

enclosure seems to hold as j increases. The net effect

should yield an increase in Nuav as j increases.

The above conjecture is confirmed by Fig. 6, where

results are presented for N = 36 and Ra = 106. Interest-

ing is the behavior of the curve for Ra = 107 and

N = 36 included in the same graph. Even though only

slightly, in this case, the effect of increasing j is similar

to that of reducing Nuav. The difference is easy to ex-

plain by recalling that when N = 36 and Ra = 106 the

buoyancy region extends away from the channel in be-

tween the wall and the first column of blocks. How-

ever, for the same number of blocks, when Ra = 107,

the buoyancy region is limited to the channel between

the wall and the first column of blocks. In this partic-

ular case, the effect of increasing j is limited to the

reduced thermal stratification within the center of

the enclosure that yields a hindered Nuav. This is cor-

roborated by the curve Ra = 107 and N = 64 also in-

cluded in the same figure, indicating an increase in
Nuav as j increases; for Ra, N = 64 a buoyancy region

wide enough to activate the first column of blocks is

created.

Figs. 7 and 8 show the variation of Nuav versus N for

the low and high Ra values, respectively. In Fig. 7, ob-

serve the increase in Nuav for both cases as j increases.

The results for Ra = 106 indicate that the effect of

increasing j becomes more pronounced when N in-

creases beyond minimum N required for flow switch,

i.e., for cases in which the buoyancy region extends itself

away from the channel adjacent to the heated (or

cooled) wall. Observe also how the curves invert their

positions when N decreases from 16 to 9: the results

for the lowest j yield highest Nuav for N = 9. In Fig. 8,

for high Ra cases of 107 and 108, the effect of varying

j is much stronger when N is higher than the minimum

N required for flow switch. Moreover, the inversion

of the curves as N crosses the line of Eq. (14) is

visible in both cases. Table 4 summarizes the numerical

results.
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Fig. 6. The effect of varying j on the average Nusselt number for N = 36 and 64.
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4. Summary and conclusions

Natural convection within a differentially heated het-

erogeneous square enclosure consisting of several dis-
connected and conducting solid blocks within a

saturated fluid is studied numerically. The amount of

solid constituent within the enclosure is kept constant

by fixing the solid-to-fluid volume ratio at 36%. Fluid
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Prandtl number is set as unity. The study covers

Rayleigh number (Ra) from 105 to 108 and fluid-to-solid

thermal conductivity ratio, j from 0.1 to 100.

Results for j = 1 indicate a switch from the fluid

flowing predominantly along the channel between the

heated (or cooled) enclosure wall and the first column

of solid blocks, to the fluid flow penetrating on to the

interior channels of the enclosure away from the heated

(or cooled) wall as number of blocks increases. This phe-

nomenon causes a drastic decrease in the heat transfer

within the enclosure, and this decrease seems to be more

pronounced (abrupt) at lower Ra.

Scale analysis argument provides means to derive an

analytical expression for the minimum number of blocks

necessary for the flow switch to take place. This analyt-
ical prediction, when compared to the numerical results,

is proven to be exceptionally accurate, indicating that

heat transfer across the enclosure is hindered when the

number of solid blocks inside the enclosure is less than

the minimum number necessary for the flow to switch,

Nmin, for high fluid-to-solid thermal conductivity

ratio, j.

For a number of solid blocks bigger than the mini-

mum number necessary for flow switch, Nmin, the heat

transfer across the enclosure is enhanced as the fluid-

to-solid thermal conductivity ratio j increases; the effect

of increasing j becomes much more pronounced in this

case. However, for N < Nmin the degree of enhancement

is inversely proportional to the Rayleigh number.

Hence, the lowest j would yield higher heat transfer



Table 4

Average Nusselt number, Nuav, for various Ra, N, and j

Ra N j

0.1 1 10 100

105 9 1.053 1.383 2.140 2.418

16 0.813 1.233 2.030 2.313

36 0.676 1.098 1.922 2.211

64 0.613 1.051 1.898 2.189

144 0.551 1.013 1.873 2.162

106 9 6.526 6.164 5.835 5.833

16 4.453 4.274 4.584 4.816

36 2.089 2.626 3.616 3.929

64 1.616 2.223 3.099 3.367

144 1.191 1.632 2.366 2.619

107 9 16.253 16.087 15.661 15.475

16 15.487 15.258 14.727 14.509

36 12.161 11.798 11.540 11.606

64 7.893 8.094 9.218 9.738

144 3.963 5.181 7.146 7.726

108 9 31.816 31.797 31.056 31.035

16 31.353 31.180 30.676 30.622

36 30.904 30.689 30.115 29.133

64 29.745 29.394 28.678 27.672

144 19.792 20.040 21.710 21.710
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for N < Nmin. In general, the effect of increasing j is that

of enhancing the overall heat transfer process for

N > Nmin.
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